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Abstract: Leaks have undoubtedly been one of the biggest 

problems plaguing piping and cabling systems across industries 

like electricity and power, building and smart cities, oil and gas, 

etc. Addressing these leaks in time becomes paramount as failure  

leads to a complete standstill of the transportation chain. Most AI 

based leak detection systems have failed to reach the deployment 

state as these systems are prone to output false positives. It is 

imperative to observe that these leaks don’t occur every day or in 

other words they are rare events. But when they do occur, these 

leaks more often than not go unnoticed. Due to the insufficient 

number of identified leak points, it becomes difficult to build an AI 

based model for the same. In an attempt to aid/replace rule-based 

and physics-based leak detection systems, this paper proposes a 

novel AI based leak detection solution using reinforcement 

learning which not only reduces false positives but also extends 

itself to multi armed bandit-based leak localization. By using this 

methodology, we model the latent behavior of any piping or 

cabling systems and provide a Q-learning based shortest path 

recommendation in order to help the maintenance team reach the 

leak node in a short amount of time.  

Keywords: Leak detection, reinforcement learning, multi arm bandit, 

Q-learning, anomaly detection. 

 

1. Introduction: 

In current times, pipeline networks span across the length and breadth 

of every country for transporting various utilities from its source to 

numerous destinations. Primarily, they are used to transport fluids and 

gases. For enhancing the durability of these pipes, they are built using 

non-corrosive and highly resistant materials like stainless steel, copper, 

PVC, etc. But like any other material, they have a breaking point. 

Although these pipes seem rigid from the outside, they are prone to 

wear and tear over time from the inside. There have been several 

instances of cracks, slits, and seepages (these disfigurements are often 

the cause of leaks) that have caused the affected pipeline to burst open 

when left unchecked. Thus, it becomes an important task to regularly 

carry out maintenance work to maintain the structural integrity of 

these pipes, especially the ones carrying high density substances.  

 

In a large-scale piping system, node level leaks or local leaks are the 

ones which occur because of sudden changes during normal 

operation. They don’t necessarily disrupt the transportation but if 

these leaks are left unchecked, they may later lead to cause a failure in 

the entire pipeline. Usually, these leaks are isolated for repair work. 

Manual detection, for any leak, is impossible nowadays because of the 

sheer length of these pipelines. Therefore, an IoT based system is 

usually installed for monitoring certain key parameters like pressure, 

temperature, etc. These systems generally lack machine intelligence 

and are programmed to trigger a warning based on a rule, or a physics 

principle. A system like this has many drawbacks. It is not dynamic 

enough to recalibrate itself when its contents are changed or if a 

certain parameter is varied for some reason. It also triggers a number 

of false positives which may lead to unnecessary halting of the 

operation and wastage of time. Ultimately, all these problems lead to 

monetary setbacks for the corporation.  

For building an AI based model for determining leaks, one needs to 

train it on equal number of datapoints from each class (or in other 

words, data should be fairly distributed amongst the classes present in 

the dataset). Proper model training is crucial in determining a model’s 

real time performance. Leaks do not occur frequently or in other words 

are rare events (<1% of the total data). Most leak scenarios in these 

pipelines are not well documented. As a result of this imbalance in the 

normal and leak datapoints, classification-based leak detection 

becomes quite challenging. Conventional anomaly detection 

algorithms like isolation forest, clustering algorithms, interquartile 

range-based models, etc. don’t help in solving the problem  either 

because of the same reason. To sum up, an AI-based leak detection 

model needs to be structured in a way wherein it minimizes the cost 

of misclassification of anomalous datapoints as normal and normal 

datapoints as anomalous. 

 

2. Related Works and Background: 

Anomaly detection has been a buzz word in many sectors because of 

rapid technological advancements in hardware and software. In the 

real world, most organizations hence generally deploy physical or 

virtual anomaly detection systems to curtail failure rates. With the 

rapid rise of IoT devices, exponential number of sensors are being used 

to collect different types of data, over a stipulated duration of time, to 

ascertain efficient operation. Such datasets are referred to as time-

series data. Time series data has many shortcomings. It contains 

varying patterns, different types of parameters, seasonality and in 



 

 

most cases, it is highly unstructured. Thus, it becomes quite a 

challenging task to detect and localize anomalies precisely.  

 

Anomaly detection systems, in the past, have been built using 

supervised [2, 3], semi-supervised and unsupervised [4, 5, 6] learning 

based methods. Supervised approaches include classification and 

regression-based models like SVM, ANN, CNN, Random Forest, Linear 

Regression, Logistic Regression, Isolation Forest, etc. These models are 

trained on datasets wherein normal datapoints are down sampled or 

anomaly datapoints are augmented for eliminating bias. But doing so 

may not be a good idea because the model, then, would not consider 

an anomaly as rare event thereby altering the very nature of the use 

case. Judging these models with accuracy being the performance 

metric may be misleading as accuracy does not take the number of 

false positives and false negatives into account. A metric like the 

Cohen Kappa score or MCC score would effectively validate the model’s 

performance in a classification-based or regression-based anomaly 

detection system. Unsupervised approaches include principle-based 

modelling, clustering, generative adversarial networks, etc. These 

models tend to output many false positives and hence are not reliable 

enough to be deployed in a real-world leak scenario. Although there 

are a few generic anomaly detection methods [13, 14] which achieve 

great performance on benchmark datasets, they require a lot of 

analysis and modifications to the data as part of their implementation 

which may not be ideal. Such approaches, unfortunately, also require 

the stakeholder to make strong assumptions which may end up 

hampering the characteristic of the use case or the data. Despite, 

numerous shortcomings in these approaches, it is important to 

acknowledge the evolution of these methods as they culminate to 

form the bedrock for the current research being done in this area. 

3. Reinforcement Learning: 

In pursuit of a reliable anomaly detection framework, researchers are 

now looking at reinforcement learning based approaches as they 

follow an incremental self-learning process. Formally, reinforcement 

learning can be defined as a technique which allows an agent to learn 

and maximize its rewards in an interactive environment by trial and 

error using feedback from its own actions and experiences. Supervised 

and unsupervised learning involve predicting next value (a task driven 

approach) and identifying clusters (a data driven approach) 

respectively. Whereas reinforcement learning involves reward 

maximization through experience. 

 

Markov Decision Processes or MDPs are used to formulate most RL 

problems mathematically. MDP is an extension to a Markov Reward 

Process where it contains an actual agency which takes 

decisions/actions. MDP essentially is a tuple <S, A, P, R, γ> where S is a 

finite set of states, A is a finite set of actions, P is a state transition 

probability matrix, R is a reward function and γ is a discount factor (γ 

∈ [0,1]). Theoretically, a MDP is defined by its state, action sets and by 

the one-step dynamics of the environment. Given any state and action 

s and a, the probability of each possible pair of next state and reward, 

s', r, is denoted  

p (s', r | s, a) = Pr {St+1 =s', Rt+1 = r | St =s, At =a} (1) 

 

These quantities completely specify the dynamics of an MDP. Given 

the dynamics as specified in (1), one can compute anything that is 

environment related, such as the expected rewards for state–action 

pairs (R),  

r (s, a) = E [Rt+1 | St =s, At =a] = Σr∈R r Σs'∈S p (s', r | s, a) (2) 

the state-transition probabilities (P),  

p (s' | s, a) = Pr {St+1 =s' | St=s, At=a} = Σr∈R p (s', r | s, a) (3) 

  

A generic RL model incorporating the above-mentioned 

fundamentals of MDPs is shown in Fig 1. 

 

Fig 1: Action-Reward feedback loop of a generic RL model 

 

All reinforcement learning algorithms involve estimating value 

functions. Value functions are functions of state or of state-action 

pairs that estimate ‘how good’ it is for the agent to be in a given state 

or how good it is to perform a given action in a given state. Value 

functions are defined with respect to particular policies. A policy, ‘ᴨ’, 

is a mapping from each state ‘s’ and action ‘a’ to the probability ᴨ (a | 

s) of taking action ‘a’ when in state ‘s’. For MDPs, we define ‘vπ’ or 

state-value function for policy ‘ᴨ’ as,  

vπ (s) = Eπ [Gt | St = s] = Eπ [Σk=0 to ∞ γk Rt+k+1 | St = s] (4) 

where Eπ [.] denotes the expected value of a random variable given 

that the agent follows policy ‘ᴨ’ and ‘t’ is any time step. A point to 

note is that the value of the terminal state is always zero. Similarly, 

one can define the value of taking action ‘a’ in state ‘s’ under a policy 

‘ᴨ’, denoted qπ(s,a) or known as the action-value function for policy ‘ᴨ’ 

as,  

qπ (s, a) = Eπ [Gt | St = s, At = a] = Eπ [Σk=0 to ∞ γk Rt+k+1 | St = s, At = a] (5) 

Note that optimal policies for multi-arm bandit problem are 

mentioned in the methodology section. After taking a brief look at 

the terms associated with reinforcement learning, it’s time to 

understand the dataset and the use case. 

 

4. Dataset Details and Use Case:  

The dataset employed for the said task is taken from a simulation 

based on a real piping system. The simulation involves a piping system 

with fifty-one sensors which are placed at important junctions and 

nodes. The sensors record the pressure metrics at these nodes. Data 

collected from these sensors span for a period of five months starting 

from 01/04/2018 to 31/08/2018 taken a minute apart. Thus, in total 

each sensor has taken 220,320 readings.   



 

 

The localization problem is to detect anomalous data points in each 

sensor and to localize the sensor having the highest leakage outflow 

by mapping the shortest path between the supervision center and the 

anomalous node. In doing so using multi arm bandit, questions like 

which sensor to monitor at an instant, how many times should an 

agent explore each node, etc. are all answered. 

 

5. Methodology: 

The framework’s modules and flow are shown in Fig 2. The process 

starts with the local anomaly/leak detection system wherein individual 

time series of the critical sensors are given as inputs and sudden jolts 

in the data points are flagged as anomalies. These anomalies are then 

discretized for implementing the multi-armed bandit-based system 

which outputs the sensor with the maximum leakage outflow based 

on its local anomaly distribution. Lastly, a shortest path prediction 

system maps an optimal path to reach that particular node from the 

supervision center. 

 

Fig 2: System Diagram 

A. Node Level Leak Detection 

  

Successful identification of node level leaks is crucial in avoiding a 

massive shutdown at a later stage. For this, a LSTM autoencoder-based 

model was utilized. As part of the hyper localization process, all the 

sensors are run through the model mentioned below and the top 

seven sensors with the most anomalies were focused upon for further 

operations. 

 

An LSTM autoencoder is a type of recurrent neural network wherein 

the input given is reconstructed back as the output. It comprises of 

three parts: the encoder, the bottleneck, and the decoder. The encoder 

is responsible for taking in the input and producing a compressed 

encoding of the input. The bottleneck is the hidden layer where this 

compressed encoding is produced. This layer determines the 

dimension of the encoding. The decoder is responsible for taking the 

compressed encoding and recreating it back to a form which is similar 

to the input. The primary objective of such a model is to curtail the 

reconstruction loss.  

  

 

Fig 3: Structure of an autoencoder 

  

The reason for implementing an autoencoder for detecting node level 

leaks is the fact that these leaks are essentially sudden changes in 

normal operation and thus will have a higher reconstruction error than 

that of the datapoints falling under the normal operating window. 

Hence, it becomes a good fit for solving an unsupervised anomaly 

detection problem. This solution is implemented on individual time 

series of the sensors as part of the localization process.  

  

As part of the data preprocessing for implementing this solution, the 

data is split into a ratio of 75:15:10 for the training, testing and 

validation sets. After splitting, the data is normalized. A LSTM network 

requires the data to be fed in be in a specific format, which is, (number 

of samples, time steps, number of features). As a result, the input data 

is reshaped in the mentioned format. A time step of 30 was decided. 

So ultimately, the input data (training set) was reshaped from 

(198288, 1) to (198258, 30, 1).  

 

A number of variations of the autoencoder architecture were tested 

before employing the below-mentioned architecture. It was finalized 

after comparing the loss values attained by individual models after 

training. The model with the least loss value was chosen, that is, the 

eleven layered LSTM autoencoder in this case (refer Table 1). 

 

Table 1: Architectures and their associated loss value 

Architecture of AE Loss Value 

5-layer 0.071 

7-layer 0.062 

9-layer 0.053 

11-layer 0.042 

13-layer 0.048 

 

The reshaped data is then pushed into an eleven layered sequential 

autoencoder model (refer Fig 4). The encoder comprises of stacked 

LSTM layers, with the input layer comprising of 64 units and the 

subsequent layers comprising of 32, 16, 8, 4 and 2 units. The last layer 

of an encoder is the bottleneck layer. Here, a bottleneck layer is of 2 

units which is also the dimension of the compressed encoding. This 

compressed encoding is then fed into the decoder which also 

comprises of stacked LSTM layers with 4, 8, 16, 32 and 64 units. A 



 

 

repeat vector layer is placed after the encoder to bring back the original 

dimensions and a time distributed layer is placed at the end in order to 

get the output. Adam is used as the optimizer and the learning rate is 

set to 8e-5. Mean absolute error is utilized to estimate the 

reconstruction error. 

 

 

Fig 4: Model Architecture  

 

The loss function curves (refer Fig 5) plotted for both the training and 

testing process suggest that the autoencoder model is a good fit.  

  

 

 Fig 5: Loss Function 

  

The model is then tested on the training set and the reconstruction 

error is computed for the included datapoints. A density plot is then 

utilized to determine the threshold for detecting anomalous 

datapoints. This threshold is decided as per the business requirement 

and is unique for each sensor. 

 

  

Fig 6: Density plot for sensor 11. 

 

Table 2: Threshold Table for critical sensors 

Sensor Number Threshold Value 

02 0.06 

05 0.5 

07 0.09 

11 0.6 

40 2.0 

41 0.5 

47 3.0 

  

After setting up the threshold, the model is tested on the validation set 

and the reconstruction error for those datapoints is also computed. If 

a datapoint’s reconstruction error shoots up above the set threshold 

then it is flagged as an anomaly. Table 3 contains the number of 

anomalous datapoints of the top seven sensors. 

 

Table 3: Number of anomalies 

Sensor Number Number of 
Anomalies 

02 151 

05 93 

07 426 

11 132 

40 120 

41 142 

47 184 

 



 

 

  

Fig 7: Anomalies in datapoints of sensor 11 

 

This method of determining anomalies is amongst the best as it doesn’t 

need the stakeholder to set up preconceived assumptions beforehand 

and works purely on a mathematical level.  

 

B. Implementing Multi armed bandit policies for detecting the 

sensor with maximum leakage outflow 

After extrapolating anomalous datapoints from the list of critical 

sensors, the next task is to find the most anomalous sensor, that is, the 

sensor which has the maximum leakage outflow. Sensor with 

maximum leakage outflow does not necessarily imply choosing the 

one with the most anomalies. It is choosing a sensor which maximizes 

reward on the basis of its reward distribution. In order to generate this 

distribution, the detected node level anomalies, are discretized to 0 

and 1 using recursive discretization using gain ratio for binary values 

and corresponding reward probabilities are calculated for setting up 

the binomial bandits. This discretization methods representatively 

selects minimum samples from the classes and uses the gain ratio 

metric that maximizes the reward likelihood. 

Table 4 holds the reward probabilities for all the critical sensors. 

 

Table 4: Reward Probabilities 

Sensor Number Reward Probability 

02 0.0068 

05 0.0042 

07 0.0194 

11 0.0059 

40 0.0054 

41 0.0064 

47 0.0084 

 

As one can infer from the table, anomalies, in most sensors, are less 

than one percent of the sample size. Hence, this technique still 

acknowledges the fact that anomalies are rare events in any real-world 

scenario.  

Here, the critical sensors are the bandits. Each one of them has a 

unique reward probability and a distinct reward distribution. The 

objective is to decide which bandit must be picked to play at each 

timestep in order to maximize the cumulative reward in the end (the 

agent is rewarded upon choosing an anomalous datapoint). 

Ultimately, the bandit with the highest cumulative reward is found to 

be the most anomalous sensor. To tackle the exploration-exploitation 

dilemma in multi arm bandits, three popular policies are compared in 

the process. The policies compared are: ε-greedy, Deep UCB and Deep 

Thompson sampling. 

 

ε-greedy policy is a simple policy. The concept is to select a bandit 

based on the best greedy action with a probability of ‘ε’ and others with 

a probability of ‘1-ε’, that is, to select a bandit based on its maximum 

reward prospects (in this case the agent ultimately goes for the sensor 

having the highest empirical reward probability). To demonstrate the 

greediness of this method, the epsilon value is set at 0.1.  

Fig 8 below shows how the agent picks a bandit based on the ε-greedy 

policy.  

Fig 9 shows the beta distribution after these draws. 

 

 

Fig 8: ε-greedy policy across random draws 

 

 

Fig 9: beta distribution after random draws (ε-greedy policy) 

 

After analyzing these plots, one can conclude that this policy has its 

shortcomings. Firstly, tuning the epsilon value is difficult and in most 

cases is not something trivial. Secondly, exploration is always constant 

(ineffective) and hence it does not necessarily give us the highest 

possible reward. Lastly, the risk of suboptimal decision making is high 

because of the two reasons mentioned above. 

The UCB policy prefers selecting bandits with the highest payoff both 

exploration wise (contact) and exploitation wise (reward). The policy 

is fairly straight forward. It takes the average reward and the number 

of times a bandit is picked for every action and tries to maximize the 

cumulative sum of the two quantities. It picks the maximum upper 

confidence bound value thereby balancing both exploration and 

exploitation and prefers arms which look promising even if they are 

played less.  

The traditional UCB  

𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑡(𝑎) + 𝑐√
ln(𝑡)

𝑁𝑡(𝑎)
) 



 

 

But the Bayesian UCB (bUCB) assumes of each arm are normally 

distributed, and alter the UCB term with the standard deviation of 

arm’s rewards and tuning the adjustable hyperparameter for 

determining the size of the confidence interval we are adding to an 

arm’s mean observed reward 

Fig 10 below shows how the agent picks a bandit based on bUCB policy 

across random draws.  

Fig 11 shows the beta distribution after these draws. 

 

Fig 10: bUCB policy across random draws 

 

 

Fig 11: beta distribution after random draws (bUCB policy) 

 

After analyzing these plots, one can conclude that bUCB policy 

explores far more than the epsilon greedy policy. The random draws 

also show that it prefers getting rewarded at a later stage but does not 

give up on sensors immediately (does not pick the sensor with the 

highest empirical probability) and explores all of them. Another 

advantage that is evident from these plots is that it does not explore at 

a constant rate thereby assuring reward maximization. 

Thompson sampling works on the principle of probability matching. At 

every round, a bandit is chosen with a probability of it being an optimal 

option. This is done by computing the posterior distribution of reward 

probabilities for each bandit. A singular sample with the maximum 

value is drawn out of the computed distribution at every round. This 

approach allows optimal exploration and eliminates unpromising arms 

(not as greedily as epsilon greedy policy) by giving them a high 

uncertainty (it does not rule out unpromising bandits immediately and 

waits until sufficient information is verified from a bandit’s beta 

distribution). But when the best arm’s distribution sticks out (by 

considering uncertainty), it exploits it aggressively.  

Fig 12 below shows how the agent picks a bandit based on Deep 

Thompson sampling(dTS) across random draws.  

Fig 13 shows the beta distribution after these draws. 

 

 

Fig 12: Deep Thompson sampling across random draws 

 

 

Fig 13: beta distribution after random draws (Deep Thompson 

sampling) 

 

The algorithm for Deep Thompson Sampling shown below 

 

Algorithm 1: Deep Thompson Sampling 

 

 

Inputs: Number of rounds, exploration variance, network width, 

regularization parameter 

 

1. Initialize the collection of parameters of the neural network 

2. for t=1...T(no of rounds) 

3.       for k=1...K(no of arms in bandit) 

4.              Select an arm based on the reward of each arm from the 

reward’s posterior distribution and then pulling the greedy arm 

5.        end for 

6.        Observe reward 

7.        Update the posterior 

8. end for  

 

After analyzing these plots, one can conclude that dTS is the most 

efficient when compared with both the bUCB policy and epsilon greedy 

policy as it handles the exploration-exploitation dilemma far more 

intuitively. A point to note here is that all the distributions for the three 

policies are on the left side as the agent does not find rewards or 

anomalies as often since anomalies are rare events.  

To check the performance of the three MAB policies on the discretized 

node level anomalies, the regret curves (refer Fig 14) for the three 

policies are plotted. Regret is the difference between the reward from 

the best possible action and the one which is actually taken. We have 

only considered the positive regret. 

 

Fig 14: Regret curves for the three MAB policies 

 

The result obtained from the regret curves show that dTS outperforms 

the epsilon greedy policy and the bUCB policy. It stands more accurate 

as it does not work on hyperparameters or any dependencies. An 



 

 

interesting observation is that the epsilon greedy policy outperforms 

the bUCB policy. This is because the bUCB policy spent a lot more 

rounds exploring whereas the epsilon greedy policy went ahead by 

exploiting the cumulative reward. The sensor pointed as most 

anomalous by dTS was sensor 07 or bandit 2. This was communicated 

to the shortest path prediction system. A point to note here is that all 

the three policies correctly identified the node with the highest 

leakage outflow. The dTS result was taken because the arm selection 

curve for bandit 2 peaked early as compared to the other policies. 

 

 

Fig 15: Most anomalous sensor pointed by ε-greedy policy, bUCB and 

Deep Thompson sampling (left to right) 

 

C. Deep Q-learning based shortest path prediction system 

After finding the sensor with maximum leakage outflow, the final task 

of localization is to find the shortest path between the supervision 

center and the anomalous node. The purpose of building such a 

system is to aid the maintenance team in isolating the node and to give 

them a quick pathway to reach there. A deep Q-learning based 

approach is employed here to keep the system dynamic. 

  

Before getting into the workings of the algorithm, it is imperative to 

understand the setting or environment in which it is implemented. The 

pipe network (where the critical sensors are placed) is laid out as 

shown in Fig 16. The sensors are mounted on the inner side of the 

pipes. Node 0 of the graph is the supervision center (highlighted in 

yellow) and nodes 1 to 7 represent the sensors in the pipeline. The 

critical node or the one with the maximum leakage outflow is node 7 

(highlighted in red). The task at hand is to find an optimal path 

between node 0 and 7. Visually, one can point out that the optimal 

path of traversal in this case is (0, 1, 4, 6, 7) but one must imagine this 

problem at a larger scale to fully understand and appreciate the 

efficiency of this system. 

 

Fig 16: Pipe Network 

Q Learning works on an intelligent reward-feedback mechanism. This 

mechanism involves setting up of the rewards table, Q table, discount 

factor and the iterations for training. The rewards table is a matrix 

which holds scores of all the paths the model can take. This matrix is a 

square matrix of size ‘n’ where ‘n’ is the total number of nodes in the 

graph (in this case n=8). Firstly, the entries of this matrix are initialized 

to -1 and then entries corresponding to all the nodes on different paths 

are changed to 0. The entries corresponding to the nodes on the goal 

paths are changed to 100 (this value can be any large value which will 

allow propagation during Q learning). The Q table is set up when the 

model starts training. This table keeps the scores of all the different 

paths the model takes while training. The dimensions of the Q table 

are similar to that of the rewards table. Unlike the rewards table, all 

entries in the Q table are initialized to 0. Each move is recorded using 

the below mentioned formula,  

Q [State, Action] = R [State, Action] + γ x max (Q [next state]) (6)  

Thus, with the help of the Q table, the model not only monitors the 

current score but also is on the lookout for the previous scores to 

optimize the entries going forward (rewards are taken from the 

rewards table). The ‘γ’ parameter in this formula is called the discount 

factor. This factor is a tunable parameter and can hold any value 

between 0 and 1. A value nearer to 0 will make the model go for 

immediate rewards and a value nearer to 1 will make the model go for 

trying alternative paths and take the reward at a later stage. The 

discount factor is set to 0.8 in this implementation. Finally, this process 

is looped over, using an optimum number of iterations.  

We have implemented the Deep variation of the Q-learning algorithm 

which uses a neural network to approximate the Q value function.  

A summarized algorithm for deep Q learning is mentioned below. 

We have implemented a neural network for Q-training by generating 

sufficient dataset for of values for state and correct q values. We will 

store all possible movements as experience and that will be used to 

predict the action to be taken to the next state 

 

 
Algorithm 2 :  Algorithm for deep Q learning 
 

 

1.Initialize Q for all pairs of state and actions 

2. s=initial state = start node i.e. supervision center 

3. while (convergence not achieved) 
3.         simulate action to reach state sa 
4.         if(sa is not terminal node) 
5.                 receive reward 
6.                 receive new node 
7.          if(sa is terminal node) 
8.                  receive reward 
9. return optimal path 

 

 

After a substantial number of epochs, the model stabilizes the Q values 

following which the score is compared to the scores in the rewards 

table to check for the optimal path. It is trained using early stopping to 

avoid resource wastage and stops automatically after the Q scores are 



 

 

confirmed (for the optimal path) for a minimum of 10 iterations. The 

results of the model are shown below. 

 

 

Fig 17: Q learning search score 

 

 

Fig 18: Optimal Path (0, 1, 4, 6, 7) 

 

Fig 17 shows the search score with successive iterations. Inference 

from the plot is that the model converges at about the 70th iteration to 

find the optimal path which is shown in Fig 18. 

 

6. Conclusion: 

The ultimate objective of this research endeavor was to incorporate 

reliable machine intelligence in leak detection systems. The presented 

framework stands validated as it intuitively manages to answer all the 

questions that were thrown at it. The novelty of this approach is the 

consideration of anomalies as rare events which allows the framework 

simulate results which are real world like. This also allows it to be a 

viable candidate for replacing or aiding rule/physics-based 

anomaly/leak detection systems in the near future. The incorporation 

of reinforcement learning in the form of MAB policies showcases its 

immense potential in the relatively unexplored sector of industrial 

grade piping and cabling. The inclusion of the Q-learning based 

shortest path prediction system is an added benefit for a leak detection 

system because of its ease at mapping dynamic paths for the 

maintenance team to reach the target node. This, ultimately saves a 

lot of valuable time, in case of a catastrophic emergency. 

Reinforcement learning based approaches are not only quick at 

coming up with the required output but are also accurate. This blend, 

thus, makes quite a compelling case for it when one decides to 

incorporate such a system in a real-life situation.  
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