

Hyper localization of leaks in piping and cabling systems using

reinforcement learning

Pranav Parnerkar Anindya Chatterjee Indrajit Kar

Siemens Advanta

Pune, India

Siemens Advanta

Bangalore, India

Siemens Advanta

Bangalore, India

pranav.parnerkar@siemens.com anindya.chatterjee@siemens.com indrajit.kar@siemens.com

Abstract: Leaks have undoubtedly been one of the biggest

problems plaguing piping and cabling systems across industries

like electricity and power, building and smart cities, oil and gas,

etc. Addressing these leaks in time becomes paramount as failure

leads to a complete standstill of the transportation chain. Most AI

based leak detection systems have failed to reach the deployment

state as these systems are prone to output false positives. It is

imperative to observe that these leaks don’t occur every day or in

other words they are rare events. But when they do occur, these

leaks more often than not go unnoticed. Due to the insufficient

number of identified leak points, it becomes difficult to build an AI

based model for the same. In an attempt to aid/replace rule-based

and physics-based leak detection systems, this paper proposes a

novel AI based leak detection solution using reinforcement

learning which not only reduces false positives but also extends

itself to multi armed bandit-based leak localization. By using this

methodology, we model the latent behavior of any piping or

cabling systems and provide a Q-learning based shortest path

recommendation in order to help the maintenance team reach the

leak node in a short amount of time.

Keywords: Leak detection, reinforcement learning, multi arm bandit,

Q-learning, anomaly detection.

1. Introduction:

In current times, pipeline networks span across the length and breadth

of every country for transporting various utilities from its source to

numerous destinations. Primarily, they are used to transport fluids and

gases. For enhancing the durability of these pipes, they are built using

non-corrosive and highly resistant materials like stainless steel, copper,

PVC, etc. But like any other material, they have a breaking point.

Although these pipes seem rigid from the outside, they are prone to

wear and tear over time from the inside. There have been several

instances of cracks, slits, and seepages (these disfigurements are often

the cause of leaks) that have caused the affected pipeline to burst open

when left unchecked. Thus, it becomes an important task to regularly

carry out maintenance work to maintain the structural integrity of

these pipes, especially the ones carrying high density substances.

In a large-scale piping system, node level leaks or local leaks are the

ones which occur because of sudden changes during normal

operation. They don’t necessarily disrupt the transportation but if

these leaks are left unchecked, they may later lead to cause a failure in

the entire pipeline. Usually, these leaks are isolated for repair work.

Manual detection, for any leak, is impossible nowadays because of the

sheer length of these pipelines. Therefore, an IoT based system is

usually installed for monitoring certain key parameters like pressure,

temperature, etc. These systems generally lack machine intelligence

and are programmed to trigger a warning based on a rule, or a physics

principle. A system like this has many drawbacks. It is not dynamic

enough to recalibrate itself when its contents are changed or if a

certain parameter is varied for some reason. It also triggers a number

of false positives which may lead to unnecessary halting of the

operation and wastage of time. Ultimately, all these problems lead to

monetary setbacks for the corporation.

For building an AI based model for determining leaks, one needs to

train it on equal number of datapoints from each class (or in other

words, data should be fairly distributed amongst the classes present in

the dataset). Proper model training is crucial in determining a model’s

real time performance. Leaks do not occur frequently or in other words

are rare events (<1% of the total data). Most leak scenarios in these

pipelines are not well documented. As a result of this imbalance in the

normal and leak datapoints, classification-based leak detection

becomes quite challenging. Conventional anomaly detection

algorithms like isolation forest, clustering algorithms, interquartile

range-based models, etc. don’t help in solving the problem either

because of the same reason. To sum up, an AI-based leak detection

model needs to be structured in a way wherein it minimizes the cost

of misclassification of anomalous datapoints as normal and normal

datapoints as anomalous.

2. Related Works and Background:

Anomaly detection has been a buzz word in many sectors because of

rapid technological advancements in hardware and software. In the

real world, most organizations hence generally deploy physical or

virtual anomaly detection systems to curtail failure rates. With the

rapid rise of IoT devices, exponential number of sensors are being used

to collect different types of data, over a stipulated duration of time, to

ascertain efficient operation. Such datasets are referred to as time-

series data. Time series data has many shortcomings. It contains

varying patterns, different types of parameters, seasonality and in

most cases, it is highly unstructured. Thus, it becomes quite a

challenging task to detect and localize anomalies precisely.

Anomaly detection systems, in the past, have been built using

supervised [2, 3], semi-supervised and unsupervised [4, 5, 6] learning

based methods. Supervised approaches include classification and

regression-based models like SVM, ANN, CNN, Random Forest, Linear

Regression, Logistic Regression, Isolation Forest, etc. These models are

trained on datasets wherein normal datapoints are down sampled or

anomaly datapoints are augmented for eliminating bias. But doing so

may not be a good idea because the model, then, would not consider

an anomaly as rare event thereby altering the very nature of the use

case. Judging these models with accuracy being the performance

metric may be misleading as accuracy does not take the number of

false positives and false negatives into account. A metric like the

Cohen Kappa score or MCC score would effectively validate the model’s

performance in a classification-based or regression-based anomaly

detection system. Unsupervised approaches include principle-based

modelling, clustering, generative adversarial networks, etc. These

models tend to output many false positives and hence are not reliable

enough to be deployed in a real-world leak scenario. Although there

are a few generic anomaly detection methods [13, 14] which achieve

great performance on benchmark datasets, they require a lot of

analysis and modifications to the data as part of their implementation

which may not be ideal. Such approaches, unfortunately, also require

the stakeholder to make strong assumptions which may end up

hampering the characteristic of the use case or the data. Despite,

numerous shortcomings in these approaches, it is important to

acknowledge the evolution of these methods as they culminate to

form the bedrock for the current research being done in this area.

3. Reinforcement Learning:

In pursuit of a reliable anomaly detection framework, researchers are

now looking at reinforcement learning based approaches as they

follow an incremental self-learning process. Formally, reinforcement

learning can be defined as a technique which allows an agent to learn

and maximize its rewards in an interactive environment by trial and

error using feedback from its own actions and experiences. Supervised

and unsupervised learning involve predicting next value (a task driven

approach) and identifying clusters (a data driven approach)

respectively. Whereas reinforcement learning involves reward

maximization through experience.

Markov Decision Processes or MDPs are used to formulate most RL

problems mathematically. MDP is an extension to a Markov Reward

Process where it contains an actual agency which takes

decisions/actions. MDP essentially is a tuple <S, A, P, R, γ> where S is a

finite set of states, A is a finite set of actions, P is a state transition

probability matrix, R is a reward function and γ is a discount factor (γ

∈ [0,1]). Theoretically, a MDP is defined by its state, action sets and by

the one-step dynamics of the environment. Given any state and action

s and a, the probability of each possible pair of next state and reward,

s', r, is denoted

p (s', r | s, a) = Pr {St+1 =s', Rt+1 = r | St =s, At =a} (1)

These quantities completely specify the dynamics of an MDP. Given

the dynamics as specified in (1), one can compute anything that is

environment related, such as the expected rewards for state–action

pairs (R),

r (s, a) = E [Rt+1 | St =s, At =a] = Σr∈R r Σs'∈S p (s', r | s, a) (2)

the state-transition probabilities (P),

p (s' | s, a) = Pr {St+1 =s' | St=s, At=a} = Σr∈R p (s', r | s, a) (3)

A generic RL model incorporating the above-mentioned

fundamentals of MDPs is shown in Fig 1.

Fig 1: Action-Reward feedback loop of a generic RL model

All reinforcement learning algorithms involve estimating value

functions. Value functions are functions of state or of state-action

pairs that estimate ‘how good’ it is for the agent to be in a given state

or how good it is to perform a given action in a given state. Value

functions are defined with respect to particular policies. A policy, ‘ᴨ’,

is a mapping from each state ‘s’ and action ‘a’ to the probability ᴨ (a |

s) of taking action ‘a’ when in state ‘s’. For MDPs, we define ‘vπ’ or

state-value function for policy ‘ᴨ’ as,

vπ (s) = Eπ [Gt | St = s] = Eπ [Σk=0 to ∞ γk Rt+k+1 | St = s] (4)

where Eπ [.] denotes the expected value of a random variable given

that the agent follows policy ‘ᴨ’ and ‘t’ is any time step. A point to

note is that the value of the terminal state is always zero. Similarly,

one can define the value of taking action ‘a’ in state ‘s’ under a policy

‘ᴨ’, denoted qπ(s,a) or known as the action-value function for policy ‘ᴨ’

as,

qπ (s, a) = Eπ [Gt | St = s, At = a] = Eπ [Σk=0 to ∞ γk Rt+k+1 | St = s, At = a] (5)

Note that optimal policies for multi-arm bandit problem are

mentioned in the methodology section. After taking a brief look at

the terms associated with reinforcement learning, it’s time to

understand the dataset and the use case.

4. Dataset Details and Use Case:

The dataset employed for the said task is taken from a simulation

based on a real piping system. The simulation involves a piping system

with fifty-one sensors which are placed at important junctions and

nodes. The sensors record the pressure metrics at these nodes. Data

collected from these sensors span for a period of five months starting

from 01/04/2018 to 31/08/2018 taken a minute apart. Thus, in total

each sensor has taken 220,320 readings.

The localization problem is to detect anomalous data points in each

sensor and to localize the sensor having the highest leakage outflow

by mapping the shortest path between the supervision center and the

anomalous node. In doing so using multi arm bandit, questions like

which sensor to monitor at an instant, how many times should an

agent explore each node, etc. are all answered.

5. Methodology:

The framework’s modules and flow are shown in Fig 2. The process

starts with the local anomaly/leak detection system wherein individual

time series of the critical sensors are given as inputs and sudden jolts

in the data points are flagged as anomalies. These anomalies are then

discretized for implementing the multi-armed bandit-based system

which outputs the sensor with the maximum leakage outflow based

on its local anomaly distribution. Lastly, a shortest path prediction

system maps an optimal path to reach that particular node from the

supervision center.

Fig 2: System Diagram

A. Node Level Leak Detection

Successful identification of node level leaks is crucial in avoiding a

massive shutdown at a later stage. For this, a LSTM autoencoder-based

model was utilized. As part of the hyper localization process, all the

sensors are run through the model mentioned below and the top

seven sensors with the most anomalies were focused upon for further

operations.

An LSTM autoencoder is a type of recurrent neural network wherein

the input given is reconstructed back as the output. It comprises of

three parts: the encoder, the bottleneck, and the decoder. The encoder

is responsible for taking in the input and producing a compressed

encoding of the input. The bottleneck is the hidden layer where this

compressed encoding is produced. This layer determines the

dimension of the encoding. The decoder is responsible for taking the

compressed encoding and recreating it back to a form which is similar

to the input. The primary objective of such a model is to curtail the

reconstruction loss.

Fig 3: Structure of an autoencoder

The reason for implementing an autoencoder for detecting node level

leaks is the fact that these leaks are essentially sudden changes in

normal operation and thus will have a higher reconstruction error than

that of the datapoints falling under the normal operating window.

Hence, it becomes a good fit for solving an unsupervised anomaly

detection problem. This solution is implemented on individual time

series of the sensors as part of the localization process.

As part of the data preprocessing for implementing this solution, the

data is split into a ratio of 75:15:10 for the training, testing and

validation sets. After splitting, the data is normalized. A LSTM network

requires the data to be fed in be in a specific format, which is, (number

of samples, time steps, number of features). As a result, the input data

is reshaped in the mentioned format. A time step of 30 was decided.

So ultimately, the input data (training set) was reshaped from

(198288, 1) to (198258, 30, 1).

A number of variations of the autoencoder architecture were tested

before employing the below-mentioned architecture. It was finalized

after comparing the loss values attained by individual models after

training. The model with the least loss value was chosen, that is, the

eleven layered LSTM autoencoder in this case (refer Table 1).

Table 1: Architectures and their associated loss value

Architecture of AE Loss Value

5-layer 0.071

7-layer 0.062

9-layer 0.053

11-layer 0.042

13-layer 0.048

The reshaped data is then pushed into an eleven layered sequential

autoencoder model (refer Fig 4). The encoder comprises of stacked

LSTM layers, with the input layer comprising of 64 units and the

subsequent layers comprising of 32, 16, 8, 4 and 2 units. The last layer

of an encoder is the bottleneck layer. Here, a bottleneck layer is of 2

units which is also the dimension of the compressed encoding. This

compressed encoding is then fed into the decoder which also

comprises of stacked LSTM layers with 4, 8, 16, 32 and 64 units. A

repeat vector layer is placed after the encoder to bring back the original

dimensions and a time distributed layer is placed at the end in order to

get the output. Adam is used as the optimizer and the learning rate is

set to 8e-5. Mean absolute error is utilized to estimate the

reconstruction error.

Fig 4: Model Architecture

The loss function curves (refer Fig 5) plotted for both the training and

testing process suggest that the autoencoder model is a good fit.

 Fig 5: Loss Function

The model is then tested on the training set and the reconstruction

error is computed for the included datapoints. A density plot is then

utilized to determine the threshold for detecting anomalous

datapoints. This threshold is decided as per the business requirement

and is unique for each sensor.

Fig 6: Density plot for sensor 11.

Table 2: Threshold Table for critical sensors

Sensor Number Threshold Value

02 0.06

05 0.5

07 0.09

11 0.6

40 2.0

41 0.5

47 3.0

After setting up the threshold, the model is tested on the validation set

and the reconstruction error for those datapoints is also computed. If

a datapoint’s reconstruction error shoots up above the set threshold

then it is flagged as an anomaly. Table 3 contains the number of

anomalous datapoints of the top seven sensors.

Table 3: Number of anomalies

Sensor Number Number of
Anomalies

02 151

05 93

07 426

11 132

40 120

41 142

47 184

Fig 7: Anomalies in datapoints of sensor 11

This method of determining anomalies is amongst the best as it doesn’t

need the stakeholder to set up preconceived assumptions beforehand

and works purely on a mathematical level.

B. Implementing Multi armed bandit policies for detecting the

sensor with maximum leakage outflow

After extrapolating anomalous datapoints from the list of critical

sensors, the next task is to find the most anomalous sensor, that is, the

sensor which has the maximum leakage outflow. Sensor with

maximum leakage outflow does not necessarily imply choosing the

one with the most anomalies. It is choosing a sensor which maximizes

reward on the basis of its reward distribution. In order to generate this

distribution, the detected node level anomalies, are discretized to 0

and 1 using recursive discretization using gain ratio for binary values

and corresponding reward probabilities are calculated for setting up

the binomial bandits. This discretization methods representatively

selects minimum samples from the classes and uses the gain ratio

metric that maximizes the reward likelihood.

Table 4 holds the reward probabilities for all the critical sensors.

Table 4: Reward Probabilities

Sensor Number Reward Probability

02 0.0068

05 0.0042

07 0.0194

11 0.0059

40 0.0054

41 0.0064

47 0.0084

As one can infer from the table, anomalies, in most sensors, are less

than one percent of the sample size. Hence, this technique still

acknowledges the fact that anomalies are rare events in any real-world

scenario.

Here, the critical sensors are the bandits. Each one of them has a

unique reward probability and a distinct reward distribution. The

objective is to decide which bandit must be picked to play at each

timestep in order to maximize the cumulative reward in the end (the

agent is rewarded upon choosing an anomalous datapoint).

Ultimately, the bandit with the highest cumulative reward is found to

be the most anomalous sensor. To tackle the exploration-exploitation

dilemma in multi arm bandits, three popular policies are compared in

the process. The policies compared are: ε-greedy, Deep UCB and Deep

Thompson sampling.

ε-greedy policy is a simple policy. The concept is to select a bandit

based on the best greedy action with a probability of ‘ε’ and others with

a probability of ‘1-ε’, that is, to select a bandit based on its maximum

reward prospects (in this case the agent ultimately goes for the sensor

having the highest empirical reward probability). To demonstrate the

greediness of this method, the epsilon value is set at 0.1.

Fig 8 below shows how the agent picks a bandit based on the ε-greedy

policy.

Fig 9 shows the beta distribution after these draws.

Fig 8: ε-greedy policy across random draws

Fig 9: beta distribution after random draws (ε-greedy policy)

After analyzing these plots, one can conclude that this policy has its

shortcomings. Firstly, tuning the epsilon value is difficult and in most

cases is not something trivial. Secondly, exploration is always constant

(ineffective) and hence it does not necessarily give us the highest

possible reward. Lastly, the risk of suboptimal decision making is high

because of the two reasons mentioned above.

The UCB policy prefers selecting bandits with the highest payoff both

exploration wise (contact) and exploitation wise (reward). The policy

is fairly straight forward. It takes the average reward and the number

of times a bandit is picked for every action and tries to maximize the

cumulative sum of the two quantities. It picks the maximum upper

confidence bound value thereby balancing both exploration and

exploitation and prefers arms which look promising even if they are

played less.

The traditional UCB

𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑡(𝑎) + 𝑐√
ln⁡(𝑡)

𝑁𝑡(𝑎)
)

But the Bayesian UCB (bUCB) assumes of each arm are normally

distributed, and alter the UCB term with the standard deviation of

arm’s rewards and tuning the adjustable hyperparameter for

determining the size of the confidence interval we are adding to an

arm’s mean observed reward

Fig 10 below shows how the agent picks a bandit based on bUCB policy

across random draws.

Fig 11 shows the beta distribution after these draws.

Fig 10: bUCB policy across random draws

Fig 11: beta distribution after random draws (bUCB policy)

After analyzing these plots, one can conclude that bUCB policy

explores far more than the epsilon greedy policy. The random draws

also show that it prefers getting rewarded at a later stage but does not

give up on sensors immediately (does not pick the sensor with the

highest empirical probability) and explores all of them. Another

advantage that is evident from these plots is that it does not explore at

a constant rate thereby assuring reward maximization.

Thompson sampling works on the principle of probability matching. At

every round, a bandit is chosen with a probability of it being an optimal

option. This is done by computing the posterior distribution of reward

probabilities for each bandit. A singular sample with the maximum

value is drawn out of the computed distribution at every round. This

approach allows optimal exploration and eliminates unpromising arms

(not as greedily as epsilon greedy policy) by giving them a high

uncertainty (it does not rule out unpromising bandits immediately and

waits until sufficient information is verified from a bandit’s beta

distribution). But when the best arm’s distribution sticks out (by

considering uncertainty), it exploits it aggressively.

Fig 12 below shows how the agent picks a bandit based on Deep

Thompson sampling(dTS) across random draws.

Fig 13 shows the beta distribution after these draws.

Fig 12: Deep Thompson sampling across random draws

Fig 13: beta distribution after random draws (Deep Thompson

sampling)

The algorithm for Deep Thompson Sampling shown below

Algorithm 1: Deep Thompson Sampling

Inputs: Number of rounds, exploration variance, network width,

regularization parameter

1. Initialize the collection of parameters of the neural network

2. for t=1...T(no of rounds)

3. for k=1...K(no of arms in bandit)

4. Select an arm based on the reward of each arm from the

reward’s posterior distribution and then pulling the greedy arm

5. end for

6. Observe reward

7. Update the posterior

8. end for

After analyzing these plots, one can conclude that dTS is the most

efficient when compared with both the bUCB policy and epsilon greedy

policy as it handles the exploration-exploitation dilemma far more

intuitively. A point to note here is that all the distributions for the three

policies are on the left side as the agent does not find rewards or

anomalies as often since anomalies are rare events.

To check the performance of the three MAB policies on the discretized

node level anomalies, the regret curves (refer Fig 14) for the three

policies are plotted. Regret is the difference between the reward from

the best possible action and the one which is actually taken. We have

only considered the positive regret.

Fig 14: Regret curves for the three MAB policies

The result obtained from the regret curves show that dTS outperforms

the epsilon greedy policy and the bUCB policy. It stands more accurate

as it does not work on hyperparameters or any dependencies. An

interesting observation is that the epsilon greedy policy outperforms

the bUCB policy. This is because the bUCB policy spent a lot more

rounds exploring whereas the epsilon greedy policy went ahead by

exploiting the cumulative reward. The sensor pointed as most

anomalous by dTS was sensor 07 or bandit 2. This was communicated

to the shortest path prediction system. A point to note here is that all

the three policies correctly identified the node with the highest

leakage outflow. The dTS result was taken because the arm selection

curve for bandit 2 peaked early as compared to the other policies.

Fig 15: Most anomalous sensor pointed by ε-greedy policy, bUCB and

Deep Thompson sampling (left to right)

C. Deep Q-learning based shortest path prediction system

After finding the sensor with maximum leakage outflow, the final task

of localization is to find the shortest path between the supervision

center and the anomalous node. The purpose of building such a

system is to aid the maintenance team in isolating the node and to give

them a quick pathway to reach there. A deep Q-learning based

approach is employed here to keep the system dynamic.

Before getting into the workings of the algorithm, it is imperative to

understand the setting or environment in which it is implemented. The

pipe network (where the critical sensors are placed) is laid out as

shown in Fig 16. The sensors are mounted on the inner side of the

pipes. Node 0 of the graph is the supervision center (highlighted in

yellow) and nodes 1 to 7 represent the sensors in the pipeline. The

critical node or the one with the maximum leakage outflow is node 7

(highlighted in red). The task at hand is to find an optimal path

between node 0 and 7. Visually, one can point out that the optimal

path of traversal in this case is (0, 1, 4, 6, 7) but one must imagine this

problem at a larger scale to fully understand and appreciate the

efficiency of this system.

Fig 16: Pipe Network

Q Learning works on an intelligent reward-feedback mechanism. This

mechanism involves setting up of the rewards table, Q table, discount

factor and the iterations for training. The rewards table is a matrix

which holds scores of all the paths the model can take. This matrix is a

square matrix of size ‘n’ where ‘n’ is the total number of nodes in the

graph (in this case n=8). Firstly, the entries of this matrix are initialized

to -1 and then entries corresponding to all the nodes on different paths

are changed to 0. The entries corresponding to the nodes on the goal

paths are changed to 100 (this value can be any large value which will

allow propagation during Q learning). The Q table is set up when the

model starts training. This table keeps the scores of all the different

paths the model takes while training. The dimensions of the Q table

are similar to that of the rewards table. Unlike the rewards table, all

entries in the Q table are initialized to 0. Each move is recorded using

the below mentioned formula,

Q [State, Action] = R [State, Action] + γ x max (Q [next state]) (6)

Thus, with the help of the Q table, the model not only monitors the

current score but also is on the lookout for the previous scores to

optimize the entries going forward (rewards are taken from the

rewards table). The ‘γ’ parameter in this formula is called the discount

factor. This factor is a tunable parameter and can hold any value

between 0 and 1. A value nearer to 0 will make the model go for

immediate rewards and a value nearer to 1 will make the model go for

trying alternative paths and take the reward at a later stage. The

discount factor is set to 0.8 in this implementation. Finally, this process

is looped over, using an optimum number of iterations.

We have implemented the Deep variation of the Q-learning algorithm

which uses a neural network to approximate the Q value function.

A summarized algorithm for deep Q learning is mentioned below.

We have implemented a neural network for Q-training by generating

sufficient dataset for of values for state and correct q values. We will

store all possible movements as experience and that will be used to

predict the action to be taken to the next state

Algorithm 2 : Algorithm for deep Q learning

1.Initialize Q for all pairs of state and actions

2. s=initial state = start node i.e. supervision center

3. while (convergence not achieved)
3. simulate action to reach state sa
4. if(sa is not terminal node)
5. receive reward
6. receive new node
7. if(sa is terminal node)
8. receive reward
9. return optimal path

After a substantial number of epochs, the model stabilizes the Q values

following which the score is compared to the scores in the rewards

table to check for the optimal path. It is trained using early stopping to

avoid resource wastage and stops automatically after the Q scores are

confirmed (for the optimal path) for a minimum of 10 iterations. The

results of the model are shown below.

Fig 17: Q learning search score

Fig 18: Optimal Path (0, 1, 4, 6, 7)

Fig 17 shows the search score with successive iterations. Inference

from the plot is that the model converges at about the 70th iteration to

find the optimal path which is shown in Fig 18.

6. Conclusion:

The ultimate objective of this research endeavor was to incorporate

reliable machine intelligence in leak detection systems. The presented

framework stands validated as it intuitively manages to answer all the

questions that were thrown at it. The novelty of this approach is the

consideration of anomalies as rare events which allows the framework

simulate results which are real world like. This also allows it to be a

viable candidate for replacing or aiding rule/physics-based

anomaly/leak detection systems in the near future. The incorporation

of reinforcement learning in the form of MAB policies showcases its

immense potential in the relatively unexplored sector of industrial

grade piping and cabling. The inclusion of the Q-learning based

shortest path prediction system is an added benefit for a leak detection

system because of its ease at mapping dynamic paths for the

maintenance team to reach the target node. This, ultimately saves a

lot of valuable time, in case of a catastrophic emergency.

Reinforcement learning based approaches are not only quick at

coming up with the required output but are also accurate. This blend,

thus, makes quite a compelling case for it when one decides to

incorporate such a system in a real-life situation.

References:

[1] Yu, Mengran & Sun, Shiliang. (2020). “Policy-Based Reinforcement

Learning for Time Series Anomaly Detection”.

10.13140/RG.2.2.29517.79844.

[2] S. Chauhan, L. Vig, “Anomaly detection in ECG time signals via

deep long short-term memory networks”, in IEEE International

Conference on Data Science and Advanced Analytics, 2015, pp. 1–7.

[3] A. R. Tuor, R. Baerwolf, N. Knowles, B. Hutchinson, N. Nichols, R.

Jasper, “Recurrent neural network language models for open

vocabulary event-level cyber anomaly detection”, in: Workshops at the

AAAI Conference on Artificial Intelligence, 2018, pp. 285–293.

[4] S. Ahmad, A. Lavin, S. Purdy, Z. Agha, “Unsupervised real-time

anomaly detection for streaming data”, Neurocomputing 262 (2017)

134–147.

[5] O. Gorokhov, M. Petrovskiy, I. Mashechkin, “Convolutional neural

networks for unsupervised anomaly detection in text data”, in:

International Conference on Intelligent Data Engineering and

Automated Learning, 2017, pp. 500–507.

[6] K. Ghasedi Dizaji, X. Wang, H. Huang, “Semi-supervised generative

adversarial network for gene expression inference”, in: International

Conference on Knowledge Discovery and Data Mining, 2018, pp.

1435–1444.

[7] R. S. Sutton, A. G. Barto, “Reinforcement learning: An introduction”,

MIT Press, 2018.

[8] Oliveira, Eduardo & Fonseca, Mário & Kappes, Daniele & Medeiros,

Arthur & Stefanini, Ihm & Brazil, (2018). “Leak Detection System using

Machine Learning Techniques.”

[9] Fuentes V.C., Pedrasa J.R.I. (2020) “Leak Detection in Water

Distribution Networks via Pressure Analysis Using a Machine Learning

Ensemble.” In: Pereira P., Ribeiro R., Oliveira I., Novais P. (eds) Society

with Future: Smart and Livable Cities. SC4Life 2019. Lecture Notes of

the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, vol 318. Springer, Cham.

[10] Liu, Y., Ma, X., Li, Y., Tie, Y., Zhang, Y., & Gao, J. (2019). “Water

Pipeline Leakage Detection Based on Machine Learning and Wireless

Sensor Networks”. Sensors (Basel, Switzerland), 19(23), 5086.

[11] Sidra Rashid, Usman Akram, Shoab A. Khan, “WML: Wireless

Sensor Network based Machine Learning for Leakage Detection and

Size Estimation”, Procedia Computer Science, Volume 63, 2015, Pages

171-176, ISSN 1877-0509.

[12] Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu, B.,

Bai, J., Tong, J., & Zhang, Q. (2020). “Multivariate Time-series Anomaly

Detection via Graph Attention Network”. 2020 IEEE International

Conference on Data Mining (ICDM), 841-850.

[13] N. Laptev, S. Amizadeh, I. Flint, “Generic and scalable framework

for automated time-series anomaly detection”, in: International

Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp.

1939–1947.

[14] S. Venkataraman, J. Caballero, D. Song, A. Blum, J. Yates, “Black

box anomaly detection: is it utopian?” HotNets (2006) 127.

[15] Vasanth Sena P., Porika S., Venu Gopalachari M. (2021) “A Mining

Framework for Efficient Leakage Detection and Diagnosis in Water

Supply System.” In: Kumar A., Mozar S. (eds) ICCCE 2020. Lecture

Notes in Electrical Engineering, vol 698. Springer, Singapore.S

[16] Coelho, João & Glória, André & Sebastião, Pedro. (2020). “Precise

Water Leak Detection Using Machine Learning and Real-Time Sensor

Data.” IoT. 1. 474-493. 10.3390/iot1020026.

[17] – Weitong Zhang and Dongruo Zhou and Lihong Li and Quanquan

Gu (2020) “Neural Thompson Sampling”

